G.“F'NCE on Ong.
‘9,?)

The 7" Balkan Conference on Operational
Resear ch
“BACOR 05”
Conganta, May 2005, Romania

o

max F(x)

THE 7™ BALKAy

HOHYIS3H TN

ACOR 03

OPTIMAL TIME AND SPACE COMPLEXITY ALGORITHM
FOR CONSTRUCTION OF ALL BINARY TREESFROM
PRE-ORDER AND POST-ORDER TRAVERSALS

ADRIAN DEACONU

“Transilvania” University of Brasov, Romania

Abstract

A linear time and space algorithm for construction of a binary tree from
the pre-order and post-order traversalsis presented.

The solution is not always unique. The number of solutions is calculated
and an optimal time and space method to find all the solutions is shown.

Keywords: binary tree, traversals, construction of tree

1. INTRODUCTION

The problem of construction the binary tree from the pre-order (or post-order) and
in-order traversalsiswel-known [1][2][3][4][5]. The linear time and space was achieved.
The case of pre-order and post-order is less studied [5][6]. The solution in this caseis not
even unigue. We shall present an agorithm to find a solution in linear time and space
and, starting from this one, we’ll be able to find all the solutions in optimal time and
space compl exity.

The method in this paper for finding one solution is adapted from the al gorithm
for finding the tree from pre-order and post-order traversal vectors [6].

All the notations we shall use are according to the textbook of Ahuja, Magnanti
and Orlin [7].

It is well-known the following propriety for the post-order traversa vector:
Propriety 1 The reversed post-order vector is aroot-right-to-left traversal vector.

We shall name the root-1eft-to-right traversal as first pre-order traversal and the
root-right-to-left traversal as the second pre-order traversal, because the nodes are
analyzed similarly to pre-order traversal: root and then it’s successors, but in reversed
order (right-to-left).

In this paper we shall refer to the first and the second pre-order traversal vectors
asthe pre-order (traversal) vectors of the trees.

It is easy to observe that a pre-order (first or second) traversal vector starts with
the root. So, we have the following propriety:
Propriety 2 In a(first or second) pre-order traversal vector the first d ement is the root of
the binary tree

Let (a)in be the first pre-order traversal vector and (b)) - the second pre-order
traversal vector. Wesuppose for eachi andj {1, 2, ..., n}, i #j that & =a;and by = by

It is obviously that:

{ali=12 .,n}={b|j=12..,n}=N, (1.1
where N is the set of nodes of the binary tree, [N| = n.

The following propriety of the first pre-order traversal vector helps usto provethe
mai n theorems of this paper (theorem 1 and theorem 2).
Propriety 3 If u and v are consecutive nodes in the first pre-order traversal vector, then
we have one of the following situations:
i) visason of the node u (seefig. 1.1). If u has two sons, then v is the left one
or:
ii) v is the son to the right of the node w and u is the last node in the first pre-order
traversal vector of the left partial tree T, of w (seefig. 1.2).

Fig. 1.1: First situation of propriety 3

Fig. 1.2: Second situation of propriety 3

2. FINDING A SOLUTION

The agorithm we shall present is a adapted from the algorithm for reconstruction
of thetree from the pre-order and post-order traversals [6].

We shall prove two theorems, which will lead us to the method to construct a
binary tree from the pre-order and post-order traversals.

For each consecutive pair of nodes, u and v, from the first pre-order traversal
vector using one of the next two theorems we can find the father denoted w of the node v.
The method of finding w involves one of the situations described in propriety 3.

The main ideaisto find a criterion for each situation that can appear and then to
provethat thereis only one node with this propri ety.

Theorem 1

1. If & is before ac (k € {2, 3,..., n}) in the second pre-order traversal vector, i.e.
Fi,j e{1,2, ..., n} sothat a., = b, a= byand i < j, then the node &, is a son of a..
If a1 has two sons, then a, is to the left of a;.

2. If two nodes, u and v, are consecutive in both (the first and the second) pre-order
traversal vectors, then the node v is the only son of u.

Proof. 1. Let k bean arbitrary valueintheset {2, 3, ..., n}.

We make two notations:

U=au=bandv=a-="0b. (2.1)

Let’s suppose that the nodes (U and v) are respecting to the second situation from
propriety 3. Then the second pre-order traversal vector (denoted pre2) is.
pre2= (..., W, ..., V, ..., U, ...). (2.2

Sinceu = by and v = by (see(2.1)) it results from (2.2) that i > j, whichi < j.

So, the consecutive nodes (u and v) of the first pre-order traversa vector are
respecting the first situation in propriety 3.

2. Thenodevisason of u (see 1.).

Let’s suppose that u has 2 sons. Let t (V) be the son to theright of u. Then, in the second
pre-order traversal vector, the nodet is next after u and, becauset = v, the nodes u and v
can not be consecutive (contradi ction).

Theorem 2 1f a; isafter ax (k € {2, 3, ..., n}) inthe second pre-order traversal vector, i.e.
Fi,j e{1, 2, ..., n} sothat a., = b, a = by and i > j, then the node & is the son to the
right of a,, wherep € {1, 2, ..., k-1} and al the nodes in the first pre-order traversal
vector (if exist) between a, and a, are after by = a, in the second pre-order traversal i.e. Vv
g e{p+tl, p+2, .., k1}, Fhe {j+1,j+2, ..., n} : ag= by.

Proof. We make the same notations as in the proof of theorem 1 (see (2.1)). We shall
provethat the father denote w of v has the propriety that it is beforevin the first pre-order
traversal vector and all the nodes (if exist) between w and v (in the first pre-order
traversal vector) are after v in the second pre-order traversal vector.

If u has more than a son (see the second part of the theorem 1), then u and v can
not be respecting situation 1 in propriety 3, because u is after v in the second pre-order
traversal vector. So, the nodes must be in the second situation (seefig. 1.2).

In the situation 2, the first pre-order traversal vector is:
prel= (..., w, ..., UV, ...). (2.3)

So, the father wis before his son v in the first pre-order traversal vector.

Let t = ay be a node between w = a, and v = & (p < k-1) in the first pre-order
traversal vector, whereq € {p+1, p+2, ..., k-1}. It results that the node t must be in the
left partia binary tree of w.

If tisin Ty, thent must be after v in the second pre-order traversal vector.

So far, we proved that the father w of v has the propriety that it is before v in the
first pre-order traversal vector and al the nodes (if exist) between w and v (in the first
pre-order traversal vector) are after v in the second pre-order traversal vector. Next we
shall prove that the father w of v is the only node with this propriety.

Let’s suppose there exists another node denoted w’ = w with the same propriety.
So, the nodew’ is beforev in the first pre-order traversal vector. We have two situations:

i) Thenodew’ is beforew in thefirst pre-order traversal vector
or
ii) The nodew’ is between w and v in thefirst pre-order traversal vector.
In the situation i) the node w is between w’ and v. All the nodes between w’ and v
are after v in the second pre-order traversal vector and so, the node w must be after v
(contradiction with the propriety of w).
In the situation ii), because the node w’ is between w and v, it must be after v in
the second pre-order traversal vector (contradiction with the presumed propriety of w’).
In both cases we obtained contradiction. So, the father w of v is the only node
with the above propriety. Thetheoremis proved.
The theorems 1 and 2 lead us to an algorithm for finding a binary tree using the
pre-order traversal vectors.
The pseudo-code of the algorithm for finding a binary tree from the pre-order
traversal vector is:
1. g[1] istherooat of thetree;
2. d1] pushes the stack s;
3. Fork:=1tondo
4. Pre2Pogb[K]] :=k;
end for;
5 m:=0;
6. Fork:=2tondo
7. |eft :=true
8. While the last node u from the stack sis after
g K] in the second pre-order vector, i.e.
Pre2Pog[u] > Pre2Pos[d k]] do
9. Pop node u out of the stack s;
10. |eft := falsg
end while
11. Letw bethelast nodein the stack s;
12. If left then
13. If Pre2Pos[w]+1 = Pre2Pos[g k]] then
a[Kk] istheonly son of w (left or right);
m:=m+1; u[m] :=w;
17. dsedK] istheleft son of w
end if;
18. dsedk] istheson toright of w;
endif;
19. Thenode k] pushesthe stack s;
end for;
Let’s study now the algorithm.
The first node of any pre-order traversal vector isthe root of thetree.
The first pre-order traversal vector components are sequentially (from the second
to the last) analyzed and then inserted in the tree using the method given by the theorems
1 or 2, depending the situation.

One of thetricky linear timeideato do thisin linear timeisto decidein O(1) if a
node is before or after another node in the second pre-order traversal vector. This can be
easily done using a vector denoted Pre2Pos.

Pre2Pos[U] isthe position of the node u in the second pre-order vector b.

The vector Pre2Pos can be built in linear time directly from the second pre-order
traversal vector b.

If we treat directly the situations presented in the theorem 2, then the worst-case
complexity of the method is greater then O(n) (for each such situation we haveto verify if
the nodes between a, and ay in the first pre-order traversal vector is after a, in the second
traversal vector). In order not to increase the complexity of the method we shall use a
denoted s stack.

A node enters the stack s after it is analyzed. Nodes exit the stack only when a
second situation of propriety 3 appears.

Let’s notice that for the current node a[K], before taking out any node from the
stack, thelast node from the stack is a[k-1] (previous analyzed and inserted).

If a[k-1] is before a[K] in the second pre-order vector, then we have the first
situation in the propriety 3 and no node is popped out of the stack. So, the last nodein the
stack (whichisa[k-1]) isthe father of a[K] (seetheorem 1).

If a[k-1] is after a[k] in the second pre-order vector then we have the second
situation of the propriety 3. All the nodes in the stack which are after a[k] are in the
second situation of the propriety 3 they are popped out of the stack.

After al these nodes are popped out of the stack, the last node in the stack is
before a[K] in the second pre-order traversal vector. This node has the propriety that all
the nodes between it and a[K] in the first pre-order traversal vector are after a[K] in the
second pre-order traversal vector, because they have been already anayzed (they entered
in the stack before). The current node a[K] is the son to the right of thelast nodein the
stack (see theorem 2).

In the end of the algorithm, the variable m will store the number of situations
where a node has only a son. The d ements of the vector u are the nodes, which have only
ason.

Theorem 3 The agorithm presented above constructs a binary tree from the pre-order
traversals vectors.

Proof. The correctness of the a gorithm is given by the observations above the al gorithm
and from the theorems 1 and 2.

If no iteration of while ... do in line 8 of the algorithm takes place, then the node
a[K] istheleft son of the last node w = a[k-1] in the stack, according to theorem 1, else
a[K] isthe son to theright of the last node w in the stack.

If there are pops out of the stack in the line 8, then the node a[K] is the son to the
right of w, because in this case a[k] is not the first son of w and the first son was
previoudly inserted in the binary treeto the left.

If the nodesw = a[k-1] and a[K] are consecutive in the second pre-order traversa
vector, then the node a[K] is the only son of w. In this case, we can not decide if a[k] is
the son to the left or to the right for w (see the second part of theorem 1).

Theorem 4 The agorithm finds a binary tree from the pre-order traversal vectors in
linear time and space.

Proof. Every component a[k] (k € {2, 3, ..., n}) of the first pre-order traversal vector
entersoncein O(1) inthe stack s and, because of this, it can not exit the stack s more than
once. So, thetotal number of iterations of all while loopsin the whole algorithmis O(n).

The worst-case time complexity of the whole algorithm is O(n).

There are three vectors with n components involved and in the stack s all n nodes
enter once, so the algorithm uses linear space.

It is easy to see that the construction of a binary tree from the traversal vectors
can not be done in a complexity less than O(n). So, the dgorithm above has an optimal
time and space compl exity.

3. FINDING ALL THE SOLUTIONS

If two nodes, u and v, are consecutive in both (the first and the second) pre-order
traversal vectors, then the node v is the only son of u. We can not decide which son of u
(Ieft or right) isv.

For the binary trees this do matter, because the case of v being the left son of u is
different than the case of v being the son to the right for u.

So, having the first and the second traversal of a binary tree if there are situations
described in the second part of the theorem 1, the solution is not unique. We can ca culate
the number of solutions.
Theorem 5 The number of solutions for the problem of construction of abinary tree from
the pre-order and post-order traversals is 2", where m is the number of situations
described in the second part of the theorem 1 that appear.
Proof. All the situations described in the second part of the theorem 1 are independent.
So, for each of these situations the number of solutions multiplies by 2.

Let’s take an example (see fig. 3.1).

3

Fig. 3.1: Binary trees having the same pre-order and post-order vectors

©. @9@@\@
S

In the figure 3.1, the first pre-order traversa vector isa = (1, 2, 3, 4, 5) and the
second pre-order traversal vector isb = (1, 2, 4, 5, 3), then m = 2, because the pair of
nodes (1, 2) and (4, 5) are consecutive in both pre-order traversal vectors. The total
number of solutions for this exampleis 2™ = 4.

We shall present now an optimal time and space complexity method to find al the
solution for the problem for construction of the binary trees from the pre-order traversals.

We saw that a solution can be found in linear time and space. Starting from this
one we can find all 2™ solutions. We shall use a vector d with m elements 0 or 1. Each
eement of d corresponds to a node, which has only a son. If d[j] = O, then the son of the
node u[j] istotheleft (or to theright) and if d[j] = 1, then the son of u[j] isthe other part
(totheright and respectively to the left).

We shall generate all 2" possible values for the vector d and for each such
instance we shall find the corresponded solution. We'll take care to do this in O(2™) time
and using linear space.

A binary tree can be kept in three vectors: Is, rs and info, each having n e ements,
asfollows:

I5[K] isthe son to the | eft of the node k. If k has no son, then Ig[k] = 0.

rg k] isthe son to the right of the node k. If k has no son, then rg[K] = 0.

info[K] is the information of the node k.

The agorithm to find al the solutions for the problem of construction of the
binary tree from the pre-order traversalsis:

1. Find asolution s, rs, info and the vector u;
2. Fori:=1tomdod[i]:=O0;

end for;
3. Fori:=1to2™1 do
4, t:=1;j:=1;
5 whilet=1 do
6. If d[j]=1 then d[j]:=0;
7. dsed[j]:=1; t:=0;
8. end if;
9. IS[u[j]] <-> Id[u[]j]]; (interchange)
10. j=jtL
11. end while
12. Inls, Ir, info is kept a new solution;
13. end for;

Theorem 6 The agorithm finds al the solutions for the problem of construction of the
binary tree from the pre-order traversals.
Proof. All 2™ possible values for the vector d are generated and for each instance the
corresponded solution is found.
Theorem 7 All the solutions for the problem of construction of the binary tree from the
pre-order traversals are found in optimal time and space compl exity.
Proof. Theinitial solution is found linear time and space (see theorem 4).

We shall calculate now the total number of while loops, which will give us the
time complexity for the second part of the algorithm.

The iterations of a while sequence ends when t becomes 0. This happens on the
position of the first O.

Let’s suppose that in the i-th iteration of for, the first 0 in d is on the position k,
where k € {1, 2, ..., m}. There are 2™ such cases. In such case, while sequence has k

iterations.
So, the total number of iterations of whileis:

Sk.2mk 3.1)
k=1

Let’s prove now that O(g k- 2m"k) = O(Zm):

k=1

o K

Sk-2™
im s _jim $ X R’
m—o 2m m—>ock:12k +

(3.2)

Thesum iz—"k is convergent because:
k=1

8K 0 vmeN
—>0,Vme
k12X

k 1 *
0<—k<F,Vk2 kO’ kOGN .

(3.3)
. m 1 *
n i
We can calculate the limit (3.2):
S k. 2k Tm—k) - 2¢ $(m+1-k)-2 =3 (m—k)- 2"
Z . — . — . — — .
k=0 _

lim =L = lim *=° = lim =2 =
mow M m—>o om m—>o oMl _ om

m-1
2m+ 32" om g

lim <0 — lim =
m—>o0 2m m—>o0 2m

The complexity of the whole algorithmis O(n+2™) = O(max{n, 2™).

It is obvioudy that an optimal time algorithm can not have the complexity less
than O(max{n, 2™}), because the elements of the traversal vectors must be analyzed at
least once (in O(n)) and the number of solutions is 2.

The agorithm uses linear space (see theorem 4).

This means that the agorithm for finding all the solutions for the problem of

construction the binary trees from the pre-order traversals has an optimal time and space
complexity.

(3.4)

BIBLIOGRAPHY

[1] H.A. Burgdor, S. Jgodia, F.N. Springsted, Y. Zalcstein (1987), “Alternative Methods
for the Reconstruction of Trees fromtheir Traversals”, BIT 27.2, 134-140;

[2] G. Chen, M.S. Yu, L. T. Liu (1988), “Two algorithms for constructing a binary tree
fromitstraversals”, Inf. Process. Lett. 28, N0.6, 297-299;

[3] E. Mékinen (1989), “Constructing a binary tree from its traversals”, BIT 29, No.3,
572-575;

[4] E. Mikinen (2000), “Constructing a binary tree efficiently from its traversals”, Int. J.
Comput. Math. 75, No.2, 143-147,;

[5] A. Andersson, S. Carlsson (1990), “Construction of a tree from its traversals in
optimal time and space”, Inf. Process. Lett. 34, No.1, 21-25;

[6] A. Deaconu (2004), “Tterative Algorithm for Construction of a Tree from its Pre-order
and Post-order Traversds in Linear Time and Space”, Anadde Stiintifice Univ.
“Alexandru Ioan Cuza” din Iasi (serie noua), ed. Univ. “Al. I. Cuza”, Tomul IV;

[7]1 R. K. Ahuja, T. L. Magnanti, J. B. Orlin (1993), “Network flows: Theory, Algoritms
and Applications”, Prentice Hall.

