
OPTIMAL TIME AND SPACE COMPLEXITY ALGORITHM
FOR CONSTRUCTION OF ALL BINARY TREES FROM

PRE-ORDER AND POST-ORDER TRAVERSALS

ADRIAN DEACONU

�Transilvania� University of Brasov, Romania

Abstract
A linear time and space algorithm for construction of a binary tree from
the pre-order and post-order traversals is presented.
The solution is not always unique. The number of solutions is calculated
and an optimal time and space method to find all the solutions is shown.

Keywords: binary tree, traversals, construction of tree

1. INTRODUCTION

The problem of construction the binary tree from the pre-order (or post-order) and
in-order traversals is well-known [1][2][3][4][5]. The linear time and space was achieved.
The case of pre-order and post-order is less studied [5][6]. The solution in this case is not
even unique. We shall present an algorithm to find a solution in linear time and space
and, starting from this one, we�ll be able to find all the solutions in optimal time and
space complexity.

The method in this paper for finding one solution is adapted from the algorithm
for finding the tree from pre-order and post-order traversal vectors [6].

All the notations we shall use are according to the textbook of Ahuja, Magnanti
and Orlin [7].

It is well-known the following propriety for the post-order traversal vector:
Propriety 1 The reversed post-order vector is a root-right-to-left traversal vector.

We shall name the root-left-to-right traversal as first pre-order traversal and the
root-right-to-left traversal as the second pre-order traversal, because the nodes are
analyzed similarly to pre-order traversal: root and then it�s successors, but in reversed
order (right-to-left).

The 7th Balkan Conference on Operational
Research

�BACOR 05�
Constanta, May 2005, Romania

In this paper we shall refer to the first and the second pre-order traversal vectors
as the pre-order (traversal) vectors of the trees.

It is easy to observe that a pre-order (first or second) traversal vector starts with
the root. So, we have the following propriety:
Propriety 2 In a (first or second) pre-order traversal vector the first element is the root of
the binary tree.

Let (ai)iN be the first pre-order traversal vector and (bi)iN the second pre-order
traversal vector. We suppose for each i and j {1, 2, �, n}, i j that ai aj and bi bj.

It is obviously that:

{ ai | i = 1, 2, �, n } = { bj | j = 1, 2, �, n } = N, (1.1)
where N is the set of nodes of the binary tree, |N| = n.

The following propriety of the first pre-order traversal vector helps us to prove the
main theorems of this paper (theorem 1 and theorem 2).
Propriety 3 If u and v are consecutive nodes in the first pre-order traversal vector, then
we have one of the following situations:
i) v is a son of the node u (see fig. 1.1). If u has two sons, then v is the left one.
or:
ii) v is the son to the right of the node w and u is the last node in the first pre-order
traversal vector of the left partial tree T1 of w (see fig. 1.2).

2. FINDING A SOLUTION

The algorithm we shall present is a adapted from the algorithm for reconstruction
of the tree from the pre-order and post-order traversals [6].

We shall prove two theorems, which will lead us to the method to construct a
binary tree from the pre-order and post-order traversals.

For each consecutive pair of nodes, u and v, from the first pre-order traversal
vector using one of the next two theorems we can find the father denoted w of the node v.
The method of finding w involves one of the situations described in propriety 3.

The main idea is to find a criterion for each situation that can appear and then to
prove that there is only one node with this propriety.

u

v

Fig. 1.1: First situation of propriety 3

w

v

u

Fig. 1.2: Second situation of propriety 3

T1 T2

Theorem 1
1. If ak-1 is before ak (k {2, 3,�, n}) in the second pre-order traversal vector, i.e.

 i, j {1, 2, �, n} so that ak-1 = bi, ak = bj and i < j, then the node ak is a son of ak-1.
If ak-1 has two sons, then ak is to the left of ak-1.

2. If two nodes, u and v, are consecutive in both (the first and the second) pre-order
traversal vectors, then the node v is the only son of u.

Proof. 1. Let k be an arbitrary value in the set {2, 3, �, n}.
We make two notations:
u = ak-1 = bi and v = ak = bj. (2.1)

Let�s suppose that the nodes (u and v) are respecting to the second situation from
propriety 3. Then the second pre-order traversal vector (denoted pre2) is:
pre2 = (�, w, �, v, �, u, �). (2.2)

Since u = bi and v = bj (see (2.1)) it results from (2.2) that i > j, which i < j.
So, the consecutive nodes (u and v) of the first pre-order traversal vector are

respecting the first situation in propriety 3.
2. The node v is a son of u (see 1.).

Let�s suppose that u has 2 sons. Let t (v) be the son to the right of u. Then, in the second
pre-order traversal vector, the node t is next after u and, because t v, the nodes u and v
can not be consecutive (contradiction).
Theorem 2 If ak-1 is after ak (k {2, 3, �, n}) in the second pre-order traversal vector, i.e.
 i, j {1, 2, �, n} so that ak-1 = bi, ak = bj and i > j, then the node ak is the son to the
right of ap, where p {1, 2, �, k-1} and all the nodes in the first pre-order traversal
vector (if exist) between ap and ak are after bj = ak in the second pre-order traversal i.e.
q {p+1, p+2, �, k-1}, h {j+1, j+2, �, n} : aq = bh.
Proof. We make the same notations as in the proof of theorem 1 (see (2.1)). We shall
prove that the father denote w of v has the propriety that it is before v in the first pre-order
traversal vector and all the nodes (if exist) between w and v (in the first pre-order
traversal vector) are after v in the second pre-order traversal vector.

If u has more than a son (see the second part of the theorem 1), then u and v can
not be respecting situation 1 in propriety 3, because u is after v in the second pre-order
traversal vector. So, the nodes must be in the second situation (see fig. 1.2).

In the situation 2, the first pre-order traversal vector is:
pre1 = (�, w, �, u, v, �). (2.3)

So, the father w is before his son v in the first pre-order traversal vector.
Let t = aq be a node between w = ap and v = ak (p < k-1) in the first pre-order

traversal vector, where q {p+1, p+2, �, k-1}. It results that the node t must be in the
left partial binary tree of w.

If t is in T1, then t must be after v in the second pre-order traversal vector.
So far, we proved that the father w of v has the propriety that it is before v in the

first pre-order traversal vector and all the nodes (if exist) between w and v (in the first
pre-order traversal vector) are after v in the second pre-order traversal vector. Next we
shall prove that the father w of v is the only node with this propriety.

Let�s suppose there exists another node denoted w� w with the same propriety.
So, the node w� is before v in the first pre-order traversal vector. We have two situations:

i) The node w� is before w in the first pre-order traversal vector
or
ii) The node w� is between w and v in the first pre-order traversal vector.

In the situation i) the node w is between w� and v. All the nodes between w� and v
are after v in the second pre-order traversal vector and so, the node w must be after v
(contradiction with the propriety of w).

In the situation ii), because the node w� is between w and v, it must be after v in
the second pre-order traversal vector (contradiction with the presumed propriety of w�).

In both cases we obtained contradiction. So, the father w of v is the only node
with the above propriety. The theorem is proved.

The theorems 1 and 2 lead us to an algorithm for finding a binary tree using the
pre-order traversal vectors.

The pseudo-code of the algorithm for finding a binary tree from the pre-order
traversal vector is:
1. a[1] is the root of the tree;
2. a[1] pushes the stack s;

3. For k:=1 to n do
4. Pre2Pos[b[k]] := k;
 end for;
5. m:=0;
6. For k:=2 to n do
7. left := true;
8. While the last node u from the stack s is after
 a[k] in the second pre-order vector, i.e.
 Pre2Pos[u] > Pre2Pos[a[k]] do
9. Pop node u out of the stack s;
10. left := false;
 end while;
11. Let w be the last node in the stack s;
12. If left then
13. If Pre2Pos[w]+1 = Pre2Pos[a[k]] then
 a[k] is the only son of w (left or right);
 m:=m+1; u[m] := w;
17. else a[k] is the left son of w
 end if;
18. else a[k] is the son to right of w;
 end if;
19. The node a[k] pushes the stack s;
 end for;

Let�s study now the algorithm.
The first node of any pre-order traversal vector is the root of the tree.
The first pre-order traversal vector components are sequentially (from the second

to the last) analyzed and then inserted in the tree using the method given by the theorems
1 or 2, depending the situation.

One of the tricky linear time idea to do this in linear time is to decide in O(1) if a
node is before or after another node in the second pre-order traversal vector. This can be
easily done using a vector denoted Pre2Pos.

Pre2Pos[u] is the position of the node u in the second pre-order vector b.
The vector Pre2Pos can be built in linear time directly from the second pre-order

traversal vector b.
If we treat directly the situations presented in the theorem 2, then the worst-case

complexity of the method is greater then O(n) (for each such situation we have to verify if
the nodes between ap and ak in the first pre-order traversal vector is after ak in the second
traversal vector). In order not to increase the complexity of the method we shall use a
denoted s stack.

A node enters the stack s after it is analyzed. Nodes exit the stack only when a
second situation of propriety 3 appears.

Let�s notice that for the current node a[k], before taking out any node from the
stack, the last node from the stack is a[k-1] (previous analyzed and inserted).

If a[k-1] is before a[k] in the second pre-order vector, then we have the first
situation in the propriety 3 and no node is popped out of the stack. So, the last node in the
stack (which is a[k-1]) is the father of a[k] (see theorem 1).

If a[k-1] is after a[k] in the second pre-order vector then we have the second
situation of the propriety 3. All the nodes in the stack which are after a[k] are in the
second situation of the propriety 3 they are popped out of the stack.

After all these nodes are popped out of the stack, the last node in the stack is
before a[k] in the second pre-order traversal vector. This node has the propriety that all
the nodes between it and a[k] in the first pre-order traversal vector are after a[k] in the
second pre-order traversal vector, because they have been already analyzed (they entered
in the stack before). The current node a[k] is the son to the right of the last node in the
stack (see theorem 2).

In the end of the algorithm, the variable m will store the number of situations
where a node has only a son. The elements of the vector u are the nodes, which have only
a son.
Theorem 3 The algorithm presented above constructs a binary tree from the pre-order
traversals vectors.
Proof. The correctness of the algorithm is given by the observations above the algorithm
and from the theorems 1 and 2.

If no iteration of while � do in line 8 of the algorithm takes place, then the node
a[k] is the left son of the last node w = a[k-1] in the stack, according to theorem 1, else
a[k] is the son to the right of the last node w in the stack.

If there are pops out of the stack in the line 8, then the node a[k] is the son to the
right of w, because in this case a[k] is not the first son of w and the first son was
previously inserted in the binary tree to the left.

If the nodes w = a[k-1] and a[k] are consecutive in the second pre-order traversal
vector, then the node a[k] is the only son of w. In this case, we can not decide if a[k] is
the son to the left or to the right for w (see the second part of theorem 1).
Theorem 4 The algorithm finds a binary tree from the pre-order traversal vectors in
linear time and space.

Proof. Every component a[k] (k {2, 3, �, n}) of the first pre-order traversal vector
enters once in O(1) in the stack s and, because of this, it can not exit the stack s more than
once. So, the total number of iterations of all while loops in the whole algorithm is O(n).

The worst-case time complexity of the whole algorithm is O(n).
There are three vectors with n components involved and in the stack s all n nodes

enter once, so the algorithm uses linear space.
It is easy to see that the construction of a binary tree from the traversal vectors

can not be done in a complexity less than O(n). So, the algorithm above has an optimal
time and space complexity.

3. FINDING ALL THE SOLUTIONS

If two nodes, u and v, are consecutive in both (the first and the second) pre-order
traversal vectors, then the node v is the only son of u. We can not decide which son of u
(left or right) is v.

For the binary trees this do matter, because the case of v being the left son of u is
different than the case of v being the son to the right for u.

So, having the first and the second traversal of a binary tree if there are situations
described in the second part of the theorem 1, the solution is not unique. We can calculate
the number of solutions.
Theorem 5 The number of solutions for the problem of construction of a binary tree from
the pre-order and post-order traversals is 2m, where m is the number of situations
described in the second part of the theorem 1 that appear.
Proof. All the situations described in the second part of the theorem 1 are independent.
So, for each of these situations the number of solutions multiplies by 2.

Let�s take an example (see fig. 3.1).

2 2

1

3 4

5

1

3 4

5

1

2

3 4

5

1

2

3 4

5

Fig. 3.1: Binary trees having the same pre-order and post-order vectors

In the figure 3.1, the first pre-order traversal vector is a = (1, 2, 3, 4, 5) and the
second pre-order traversal vector is b = (1, 2, 4, 5, 3), then m = 2, because the pair of
nodes (1, 2) and (4, 5) are consecutive in both pre-order traversal vectors. The total
number of solutions for this example is 2m = 4.

We shall present now an optimal time and space complexity method to find all the
solution for the problem for construction of the binary trees from the pre-order traversals.

We saw that a solution can be found in linear time and space. Starting from this
one we can find all 2m solutions. We shall use a vector d with m elements 0 or 1. Each
element of d corresponds to a node, which has only a son. If d[j] = 0, then the son of the
node u[j] is to the left (or to the right) and if d[j] = 1, then the son of u[j] is the other part
(to the right and respectively to the left).

We shall generate all 2m possible values for the vector d and for each such
instance we shall find the corresponded solution. We�ll take care to do this in O(2m) time
and using linear space.

A binary tree can be kept in three vectors: ls, rs and info, each having n elements,
as follows:
 ls[k] is the son to the left of the node k. If k has no son, then ls[k] = 0.
 rs[k] is the son to the right of the node k. If k has no son, then rs[k] = 0.
 info[k] is the information of the node k.

The algorithm to find all the solutions for the problem of construction of the
binary tree from the pre-order traversals is:
1. Find a solution ls, rs, info and the vector u;
2. For i:=1 to m do d[i]:=0;
 end for;
3. For i:=1 to 2m-1 do
4. t:=1; j:=1;
5. while t=1 do
6. If d[j]=1 then d[j]:=0;
7. else d[j]:=1; t:=0;
8. end if;
9. ls[u[j]] <-> ld[u[j]]; (interchange)
10. j:=j+1;
11. end while;
12. In ls, lr, info is kept a new solution;
13. end for;
Theorem 6 The algorithm finds all the solutions for the problem of construction of the
binary tree from the pre-order traversals.
Proof. All 2m possible values for the vector d are generated and for each instance the
corresponded solution is found.
Theorem 7 All the solutions for the problem of construction of the binary tree from the
pre-order traversals are found in optimal time and space complexity.
Proof. The initial solution is found linear time and space (see theorem 4).

We shall calculate now the total number of while loops, which will give us the
time complexity for the second part of the algorithm.

The iterations of a while sequence ends when t becomes 0. This happens on the
position of the first 0.

Let�s suppose that in the i-th iteration of for, the first 0 in d is on the position k,
where k {1, 2, �, m}. There are 2m-k such cases. In such case, while sequence has k
iterations.

So, the total number of iterations of while is:

m

k

kmk
1

2 . (3.1)

Let�s prove now that

m

k

kmkO
1

2 = mO 2 :

m

k
kmm

m

k

km

m

k
k

1

1

2
lim

2

2
lim R

*

 (3.2)

The sum

m

k
k

k

12
 is convergent because:

*

1
2

*
002

*

1

1
lim

,,
1

2
0

,0
2

R
k

Nkkk
k

k

Nm
k

m

km

k

m

k
k

. (3.3)

We can calculate the limit (3.2):

 mm

m

k

k
m

k

k

mm

m

k

k

mm

m

k

km

m

kmkmkmk

22

2)(2)1(
lim

2

2)(
lim

2

2
lim

1

1

00

1

01

2
2

12
lim

2

22
lim

1

1

0

 m

m

mm

m

k

km

m
 (3.4)

The complexity of the whole algorithm is O(n+2m) = O(max{n, 2m}).
It is obviously that an optimal time algorithm can not have the complexity less

than O(max{n, 2m}), because the elements of the traversal vectors must be analyzed at
least once (in O(n)) and the number of solutions is 2m.

The algorithm uses linear space (see theorem 4).
This means that the algorithm for finding all the solutions for the problem of

construction the binary trees from the pre-order traversals has an optimal time and space
complexity.

BIBLIOGRAPHY

[1] H.A. Burgdor, S. Jajodia, F.N. Springsteel, Y. Zalcstein (1987), �Alternative Methods
for the Reconstruction of Trees from their Traversals�, BIT 27.2, 134-140;
[2] G. Chen, M.S. Yu, L. T. Liu (1988), �Two algorithms for constructing a binary tree
from its traversals�, Inf. Process. Lett. 28, No.6, 297-299;
[3] E. Mäkinen (1989), �Constructing a binary tree from its traversals�, BIT 29, No.3,
572-575;
[4] E. Mäkinen (2000), �Constructing a binary tree efficiently from its traversals�, Int. J.
Comput. Math. 75, No.2, 143-147;
[5] A. Andersson, S. Carlsson (1990), �Construction of a tree from its traversals in
optimal time and space�, Inf. Process. Lett. 34, No.1, 21-25;
[6] A. Deaconu (2004), �Iterative Algorithm for Construction of a Tree from its Pre-order
and Post-order Traversals in Linear Time and Space�, Analele Stiintifice Univ.
�Alexandru Ioan Cuza� din Iasi (serie noua), ed. Univ. �Al. I. Cuza�, Tomul IV;
[7] R. K. Ahuja, T. L. Magnanti, J. B. Orlin (1993), �Network flows: Theory, Algoritms
and Applications�, Prentice Hall.

